Pyrite Oxidation And Its Control Amd Molecular Oxidation Mechanisms Microbial Role K

Information Circular Engineering Tools for Environmental Risk Management Acid Mine Drainage Formation and Abatement The Restoration and Management of Derelict Land 3rd Annual Workshop Proceedings of the Collaborative Project "Redox Phenomena Controlling Systems" (7th EC FP CP RECSYS) EPA-600/7-
Control of Eh and pH to Evaluate the Rate of Pyrite Oxidation Control of Acid Drainage from Coal Refuse Using Anionic Surfactants Pyrite Surface Characterization and Control for Advanced Fine Coal Desulfurization Technologies. Tenth Quarterly Technical Progress Report, January 1, 1993--March 31, 1993 Bernissart Dinosaurs and Early Cretaceous Terrestrial Ecosystems Bureau of Mines Research and Technologic Work on Coal, 1962 Environmental Geochemistry of Pyrite Surface Chemistry in Physical Coal Cleaning Control of Pyrite Surface Chemistry in Physical Coal Cleaning. Technical Progress Report for the Ninth Quarter, September 1--November 30, 1991 Sulfur Biogeochemistry User's Manual for Premining Planning of Eastern Surface Coal Mining Cryosols Chemistry of Trace Elements in Fly Ash Control of Pyrite Surface Chemistry in Physical Coal Cleaning. Twelfth Quarterly Technical Progress Report, June 1, 1992--August 31, 1992 Practical Considerations of Pyrite Oxidation Control in Uranium Tailings Mining in the Arctic Mechanisms of Pyrite Oxidation to Non-slagging Species. Quarterly Report, January 1, 1996--March 31, 1996 Integration of Scientific and Industrial Knowledge on Biohydrometallurgy Information Circular Basics of Metal Mining Influenced Water Silica fly Ash-based Technology for Controlling Pyrite Oxidation. Semi-annual, March 1, 1996 - August 31, 1996 Environmental Soil and Water Chemistry Urban Geoscience Pyrite Oxidation in Saturated and Unsaturated Porous Media Flow Pyrite Surface Characterization and Control for Advanced Fine Coal Desulfurization Technologies. Ninth Quarterly Technical Progress Report, September 1, 1992--December 31, 1992 Tenth Anniversary of the Surface Mining Control and Reclamation Act of 1977 Pyrite Oxidation in Carbonate Buffered Systems Evaluation of Coal Refuse Reclamation Projects for Long-term Control of Pyrite Oxidation and Water Quality Surface Water Pollution and its Control Mechanisms of Pyrite Oxidation to Non-slagging Species. Quarterly Report, April 1, 1996 - June 30, 1996 Pyrite Surface Characterization and Control for Advanced Fine Coal Desulfurization Technologies Pyrite Oxidation and Its Control: Control of Pyrite Surface Chemistry in Physical Coal Cleaning. Final Report Bibliography of Investment and Operating Costs for Chemical and Petroleum Plants Making use of information drawn from a variety of sources this book addresses the problems created by all the principal forms of surface water pollution. The chemical, physical and biochemical parameters of water quality, without an appreciation of which no true understanding of river pollution control is possible, are discussed in some detail as are the roles of the variety of micro and other organisms present in natural waters. Self-purification of surface waters is considered in some detail. An up-to-date review of the legislation relating to surface water pollution control both in the UK and the USA is included as is an informative introduction to the potentially confusing subject of water quality modelling. The book provides the student, researcher and scientist interested in river pollution and pollution control with the most up-to-date and comprehensive coverage of the subject available anywhere. This is the 9th quarterly technical progress report for the project entitled Pyrite surface characterization and control for advanced fine coal desulfurization technologies", DE-FG22-90PC90295. The work presented in this report was performed from September 1, 1992 to November 31, 1992. The objective of the project is to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is tronly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by: FeS(sub 2) + B(OH)(sub 4) + e -> S(sub 2)Fe-B(OH)(sub 4)(sub surf) + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results. Cryosols - permafrost - occupy a unique part of the earth and have properties greatly different from other soils. They also occur where the greatest impact of global warming is predicted. This is the first book bring together the leading researchers in the area of permafrost soils to produce a review of the geography, cryogenic soil forming processes, ecological processes, classification and use of soils that are affected by permafrost. This document is the eighth quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO(subscript x) pulverized coal (P.C.) combustion. In general, the project has the following objectives: (1) the characterization of the various mechanisms of intraparticle mass transfer and chemical reaction that control overall pyrite combustion rates and (2) the synthesis of the reaction rate resistances of the various mechanisms into a general rate expression for pyrite combustion. The
knowledge gained from this project will be incorporated into numerical codes and utilized to formulate slagging abatement strategies involving the minor adjustment of firing conditions. Ultimately, the benefit of this research program is intended to be an increase in the range of coals compatible with staged, low-
\(\text{NO}_x \) combustor retrofits. A broad discussion of modern restoration and the management needed after restoration. It deals with relevant topics such as restoration ecology; restoration planning; ecological and ecotoxicological risk assessment; management and adaptive management; restoration in the broader context of sustainable development; and case studies and examples related to the Asian region. Major emphasis is placed on the Asian region, but the techniques described in the book can also be applied to other regions. The work should serve as a reference for undergraduate and postgraduate students, professors, decision-makers and engineers in environmental science and management. This volume looks at the increasing demand for geoscientific input to planning urban land use, rectifying problems of decay and poor prior procedures, rehabilitating land after the closure of extractive and other industries, designing new constructions, and environmental assessment. The separation of pyrite from coal by flotation depends on the wettability difference between coal and pyrite. There is evidence that the wettability of coal pyrite changes upon superficial oxidation. Therefore, the oxidation of coal pyrite has been studied under carefully controlled electrochemical conditions. In order to identify the species responsible for the changes in wettability, the surface products formed during oxidation have been identified by means of various surface analysis techniques, including X-ray photoelectron spectroscopy (XPS) and ion scattering spectroscopy (ISS). It has been found that pyrite oxidation creates a sulfur-rich surface along with iron oxides/hydroxides. The ratio between these hydrophobic and hydrophilic species correlates well with the results of the wettability measurements. An excellent knowledge base in soil and water chemistry—the ideal basic text for students of the environmental sciences In Environmental Soil and Water Chemistry, leading soil and water authority V. P. Evangelou presents a complete overview of the principles and applications of soil science, addressing the subject by viewing the interactions between soil and water as a basis for understanding the nature, extent, and treatment of polluted soil and water. The text opens with a discussion of principles—the fundamental tenets of chemistry needed to understand soil and water quality and treatment of polluted resources—and continues with a look at applications for the control and treatment of soil and water. Suitable for advanced undergraduates and beginning graduate students, this extensive, timely volume covers: * Water chemistry and mineral solubility; soil minerals and surface chemical properties and their behavior; and electrochemistry and kinetics * The control of agricultural chemical pollution and land disturbance pollution; colloids and transport processes in soils; and technologies for measuring quality and executing treatment * Specific chemical contaminants and the procedures for their neutralization In a world where chemical pollutants pose a grave threat to the earth’s natural resources, Environmental Soil and Water Chemistry offers students both an excellent textbook and a handy reference document. The project was conducted from 2000 to 2003. The objective of the project was to conduct extensive fundamental studies on the surface chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. This report summarizes the studies in the following three aspects: (1) the effects of borate, used as pH buffer or electrolyte, on the pyrite surface oxidation and flotation; (2) the quantification of pyrite surface oxidation kinetics under different oxidation potentials; and (3) finding new coal-pyrite depressants. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying pyrite oxidation, actively participates in the surface oxidation of pyrite. In high borate concentration solutions, the surface oxidation of pyrite is strongly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. At low borate concentration, borate is chemisorbed on pyrite surfaces. In the intermediate concentration range, borate dissolves surface iron compounds. Consequently, the flotation of pyrite in borate solutions (using fuel oil as collector) displays depression-flotation-depression phenomena as the borate concentration is increased. The oxidation kinetics of pyrite surfaces has been determined by AC impedance spectroscopy. At low oxidation potentials, only capacitive behavior is observed. However, at high oxidation potentials, an inductive loop appears. The charge transfer resistance decreases with increasing potential, indicating that the oxidation rate increases with increasing potential. A chemical reagent has been found to be very effective in depressing the flotation of coal-pyrites from different sources, while it has little effects on the flotation of coal. The surface chemistry involved in the selective pyrite depression by this new reagent has been investigated by electrochemical studies and contact angle measurements. The proceedings of the 6th International Symposium on Mining in the Arctic, held in Greenland in 2001. The papers cover a wide variety of topics, including: mining exploration and exploitation; mining engineering and mine design; environmental impact of mining in the Arctic; and more. Over the past 10 years, much research has provided convincing evidence that one major difficulty in using froth flotation to separate pyrite from coal is the “self-induced” flotation of pyrite. Numerous studies have attempted to identify reactions that occur under moderate oxidizing conditions, which lead to self-induced flotation, and to identify the oxidation products. During the past two report periods, it was established that: (1) freshly fractured pyrite surfaces immediately assume, at fracture, an electrode potential several hundred millivolts more negative than the usual steady state mixed potentials. Within minutes after fracture, the electrodes oxidize and reach higher steady state potentials. It was also shown, by photocurrent measurements, that a negative surface charge (upward band bending) already exists on freshly fractured pyrite, and (2) particle bed electrodes can be used to control the oxidation of pyrite and to precisely determine the electrochemical conditions where flotation occurs, or is depressed. By circulating the solution phase to an ultraviolet spectrometer, soluble products produced on pyrite by oxidation and reduction can be determined, e.g., HS− was
identified as a soluble cathodic reduction product. These and other studies have provided considerable information concerning the anodic oxidation of pyrite. Much less is known about the mechanism and kinetics of oxygen reduction, the other half of the mixed potential reaction. To better understand pyrite oxidation kinetics and determine if oxygen reduction is rate determining, studies have been conducted during this report period on the oxygen reduction reaction with pyrite. In addition, to provide further support that the potential of particle bed electrodes can be controlled, the electro-adsorption and desorption of an organic surfactant was studied.

Pyrite (FeS2) is one of the most common naturally occurring minerals that is present in many subsurface environments. It plays an important role in the genesis of enriched ore deposits through weathering reactions, is the most abundant sulfide mineral in many mine tailings, and is the primary source of acid drainage from mines and waste rock piles. The pyrite oxidation reaction serves as a prototype for oxidative weathering processes with broad significance for geochemical, engineering, and environmental applications. Mathematical modeling of these processes is extremely challenging because aqueous concentrations of key species vary over an enormous range, oxygen inventory and supply, and chemical reactions are complex, involving kinetic control and microbial catalysis. We present the mathematical formulation of a general multi-phase advective-diffusive reactive transport model for redox processes. Two alternative implementations were made in the TOUGHREACT and TOUGH2-CHEM simulation codes which use sequential iteration and simultaneous solution, respectively. The simulations are applied to reactive consumption of pyrite in (1) saturated flow of oxidizing water, and (2) saturated-unsaturated flow in which oxygen transport occurs in both aqueous and gas phases. Geochemical evolutions predicted from different process models are compared, and issues of numerical accuracy and efficiency are discussed. The overall objective is to develop methodologies by which metal-soluble or fly ash may produce an effective coating on pyrite surfaces for inhibiting pyrite oxidation. During the past six months, the investigators produced wet chemistry evidence demonstrating that pyrite-HCO3 complexes promote pyrite oxidation. This is an important finding for their overall strategy in controlling pyrite oxidation because it suggests that pyrite microencapsulation is important in order to control oxidation in near circumneutral pH environments produced by addition of alkaline material, e.g., fly ash. In their previous studies, the investigators reported that pyrite microencapsulation could be carried out by reacting pyrite with a pH buffered solution and in the presence of metal-soluble. The coating formed on the surface of pyrite appeared to be an amorphous iron-oxide-silicate material which inhibited pyrite oxidation. During this past six months, the investigators evaluated: the molecular mechanisms of silicate adsorption by iron oxide; the effects of silicate on the bulk and surface properties of iron oxides; and the effect of silicate on metal-cation adsorption properties by iron oxides. This is the 9th quarterly technical progress report for the project entitled "Pyrite surface characterization and control for advanced fine coal desulfurization technologies", DE-FG22-90PC90295. The work presented in this report is focused on fundamental studies on the chemistry of pyrite oxidation and flotation and to understand how the alteration of the coal-pyrite surface affects the efficiency of pyrite rejection in coal flotation. During this reporting period, the surface oxidation of pyrite in various electrolytes was investigated. It has been demonstrated, for the first time, that borate, a pH buffer and electrolyte used by many previous investigators in studying sulfide mineral oxidation, actively participates in the surface oxidation of pyrite. In borate solutions, the surface oxidation of pyrite is strongly enhanced. The anodic oxidation potential of pyrite is lowered by more than 0.4 volts. The initial reaction of the borate enhanced pyrite oxidation can be described by: FeS2 + B(OH)4 -> [S2Fe-B(OH)4] + e. This reaction is irreversible and is controlled by the mass-transfer of borate species from the solution to the surface. It has been shown that the above reaction inhibits the adsorption of xanthate on pyrite. Comparative studies have been made with other sulfide minerals. The solution chemistry of the iron-borate systems have been studied to understand the electrochemical results. Over the past 10 years, much research has provided convincing evidence that one major difficulty in using froth flotation to separate pyrite from coal is the self-induced flotation of pyrite. Numerous studies have attempted to identify reactions that occur under moderate oxidizing conditions, which lead to self-induced flotation, and to identify the oxidization products. During the previous two report periods, it was established that: (1) freshly fractured pyrite surfaces immediately assume, at fracture, an electrode potential several hundred millivolts more negative than the usual steady state mixed potentials. Within minutes after fracture, the electrodes oxidize and reach higher steady state potentials. It was also shown, by photocurrent measurements, that a negative surface charge (upward band bending) already exists on freshly fractured pyrite, and (2) particle bed electrodes can be used to control the oxidation of pyrite and to precisely determine the electrochemical conditions where flotation occurs, or is depressed. By circulating the solution phase to an ultraviolet spectrometer, soluble products produced on pyrite by oxidation and reduction can be determined, e.g., HS[sup [minus]] was identified as a soluble cathodic reduction product. These and other studies have provided considerable information concerning the anodic oxidation of pyrite. Much less is known about the mechanism and kinetics of oxygen reduction, the other half of the mixed potential reaction. To better understand pyrite oxidation kinetics and determine if oxygen reduction is rate determining, studies have been conducted during this report period on the oxygen reduction reaction with pyrite. In addition, to provide further support that the potential of particle bed electrodes can be controlled, the electro-adsorption and desorption of an organic surfactant was studied. This document is the seventh quarterly status report on a project that is conducted at the High Temperature Gasdynamics Laboratory at Stanford University, Stanford, California and is concerned with enhancing the transformation of iron pyrite to non-slagging species during staged, low-NO(sub X) pulverized coal (P.C.) combustion. The project aims to identify the mechanisms of pyrite combustion and to quantify
their effects, in order to formulate a general rate expression for the combustion of pyrite that accounts for coal properties as well as furnace conditions. In general, the project has the following objectives: 1) the characterization of the various mechanisms of intraparticle mass transfer and chemical reaction that control overall pyrite combustion rates and 2) the synthesis of the reaction rate resistances of the various mechanisms into a general rate expression for pyrite combustion. The knowledge gained from this project will be incorporated into numerical codes and utilized to formulate slagging abatement strategies involving the minor adjustment of firing conditions. Ultimately, the benefit of this research program is intended to be an increase in the range of coals compatible with staged, low-NOx combustor retrofits. 9 refs., 12 figs.

The accumulation of large amounts of ash from fossil fuel combustion for electric power plant generation is becoming a major environmental concern in the United States. Furthermore, stringent environmental regulations mandated by the Environmental Protection Agency through the Clean Air Act, Clean Water Act, Resource Conservation and Recovery Act, as well as state and local environmental regulations may result in even more ash accumulation with subsequent contact with the environment. The consequences of this are extremely adverse and depend on the composition of the original coal, conditions during combustion, the efficiency of emission control devices, storage and handling of byproducts, and climate. The research papers presented in this volume herein have been subjected to peer review. Pyrite Oxidation and Its Control is the single available text on the market that presents the latest findings on pyrite oxidation and acid mine drainage (AMD). This new information is an indispensable reference for generating new concepts and technologies for controlling pyrite oxidation. This book focuses on pyrite oxidation theory, experimental findings on oxidation mechanisms, as well as applications and limitations of amelioration technologies. The text also includes discussions on the theory and potential application of novel pyrite microencapsulation technologies for controlling pyrite oxidation currently under investigation in the author’s laboratory. The Treatise on Geochemistry is the first work providing a comprehensive, integrated summary of the present state of geochemistry. It deals with all the major subjects in the field, ranging from the chemistry of the solar system to environmental geochemistry. The Treatise on Geochemistry has drawn on the expertise of outstanding scientists throughout the world, creating the reference work in geochemistry for the next decade. Each volume consists of fifteen to twenty-five chapters written by recognized authorities in their fields, and chosen by the Volume Editors in consultation with the Executive Editors. Particular emphasis has been placed on integrating the content within each volume and throughout the individual volumes. The platform scienceDirect, the most comprehensive database of academic research on the Internet today, enhanced by a suite of sophisticated linking, searching and retrieval tools.

Part I, Surface Chemistry of Coal Pyrite: the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability of coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn. Basics of Metal Mining Influenced Water is a must-read for planners, regulators, consultants, land managers, students, researchers, or others concerned about the environmentally sound management of metal mine wastes and drainage quality. The first of a series of six handbooks on technologies for managing metal mine and metallurgical process draining, this book offers a unique, comprehensive perspective on the subject. Unlike other texts that focus primarily on acid drainage from coal mines, the authors examine both acidic and neutral pH waters that can be hazardous to the environment. Planning a new mine in today’s increasingly contentious regulatory and political environment demands a different philosophy. Basics of Metal Mining Influenced Water takes an innovative, holistic approach by considering all aspects of the mine life cycle, including closure. Written by a team of experts from state and federal governments, academia, and the mining industry, Basics of Metal Mining Influenced Water also discusses the major physical and chemical relationships between mining, climate, environment, and mine waste drainage quality. The authors have included an extensive glossary defining hundreds of technical terms for easier reading and understanding.

Volume is indexed by Thomson Reuters CPCI-S (WoS). The main focus of this collection of peer-reviewed articles is biohydrometallurgy. This is the field of microbial ecology which is the key to answering central questions concerning not only the diversity and behavior of micro-organisms in commercial
operations, but also possible applications in biohydrometallurgy of extremophiles coming from very different environments. The 134 papers are grouped as follows: Chapter 1: Microbial Ecology, Geomicrobiology and Bioprospecting in Natural and Mining Environments; Chapter 2: Omics, Molecular Genetics and Biochemistry of Microorganisms in Mining Processes; Chapter 3: Industrial Biohydrometallurgy: Studies, Practices and Operation; Chapter 4: Biohydrometallurgy as a Remediation Strategy.

The four volumes of the book series "Engineering Tools for Environmental Risk Management" deal with environmental management, assessment & monitoring tools, environmental toxicology and risk reduction technologies. This last volume focuses on engineering solutions usually needed for industrial contaminated sites, where nature's self-remediation is inefficient or too slow. The success of remediation depends on the selection of an increasing number of conventional and innovative methods. This volume classifies the remedial technologies and describes the reactor approach to understand and manage in situ technologies similarly to reactor-based technologies. Technology types include physicochemical, biological or ecological solutions, where near-natural, sustainable remediation has priority. A special chapter is devoted to natural attenuation, where natural changes can help achieve clean-up objectives. Natural attenuation and biological and ecological remediation establish a serial range of technologies from monitoring only to fully controlled interventions, using 'just' the natural ecosystem or sophisticated artificial living systems. Passive artificial ecosystems and biodegradation-based remediation - in addition to natural attenuation - demonstrate the use of these 'green' technologies and how engineering intervention should be kept at a minimum to limit damage to the environment and create a harmonious ecosystem. Remediation of sites contaminated with organic substances is analyzed in detail including biological and physicochemical methods. Comprehensive management of pollution by inorganic contaminants from the mining industry, leaching and bioleaching and acid mine drainage is studied in general and specifically in the case of an abandoned mine in Hungary where the innovative technology of combined chemical and phytostabilization has been applied. The series of technologies is completed by electrochemical remediation and nanotechnologies. Monitoring, verification and sustainability analysis of remediation provide a comprehensive overview of the management aspect of environmental risk reduction by remediation. This book series focuses on the state of knowledge about the environment and its conscious and structured application in environmental engineering, management and decision making. In 1878, the first complete dinosaur skeleton was discovered in a coal mine in Bernissart, Belgium. Iguanodon, first described by Gideon Mantell on the basis of fragments discovered in England in 1824, was initially reconstructed as an iguana-like reptile or a heavily built, horned quadruped. However, the Bernissart skeleton changed all that. The animal was displayed in an upright posture similar to a kangaroo, and later with its tail off the ground like the dinosaur we know of today. Focusing on the Bernissant discoveries, this book presents the latest research on Iguanodon and other denizens of the Cretaceous ecosystems of Europe, Asia, and Africa. Pascal Godefroit and contributors consider the Bernissart locality itself and the new research programs that are underway there. The book also presents a systematic revision of Iguanodon; new material from Spain, Romania, China, and Kazakhstan; studies of other Early Cretaceous terrestrial ecosystems; and examinations of Cretaceous vertebrate faunas.

Copyright code: 6d23c21100ee5a49b2710428315c9e50